2 research outputs found

    Smart energy meter based on a long-range wide-area network for a stand-alone photovoltaic system

    Get PDF
    Long-range wide-area network (LoRaWAN) has emerged as a key technology for Internet of Things (IoT) applications worldwide owing to its cost-effectiveness, robustness to interference, low power, licensed-free frequency band, and long-range connectivity, thanks to the adaptive data rate. In this contribution, an IoT-enabled smart energy meter based on LoRaWAN technology (SEM-LoRaWAN) is developed to measure the energy consumption for a photovoltaic (PV) system and send real-time data to the utility/consumers over the Internet for billing/monitoring purposes. The proposed SEM-LoRaWAN is implemented in a PV system to monitor related parameters (i.e., voltage, current, power, energy, light intensity, temperature, and humidity) and update this information to the cloud. A LoRa shield is attached to an Arduino microcontroller with several sensors to gather the required information and send it to a LoRaWAN gateway. We also propose an algorithm to compose data from multiple sensors as payloads and upload these data using the gateway to The Things Network (TTN). The AllThingsTalkMaker IoT server is integrated into the TTN to be accessed using Web/mobile application interfaces. System-level tests are conducted using a fabricated testbed and connected to a solar panel to prove the SEM-LoRaWAN effectiveness in terms of functionality, simplicity, reliability, and cost. The connectivity between the system and users is achieved using smartphones/laptops. Results demonstrate a smooth system operation with detailed and accurate measurements of electrical usage and PV environmental conditions in real-time

    The influence of graphitization catalyst electrode in electrical discharge machining of polycrystalline diamond-finishing condition

    Get PDF
    Electrical Discharge Machining (EDM) is a non-contact machining process that becomes famous in machining of Polycrystalline Diamond (PCD). The material is typically used as the cutting tools for aerospace and automotive industries. However, low electrical conductivity and high melting temperature of PCD has caused slower EDM process. This investigation purposely designed to investigate the influence of different types of electrode which are Copper (ordinary electrode) and Copper-Nickel (newly proposed graphitization catalyst electrode) on EDM performance of MRR and Ra. Interestingly the newly proposed electrode gave positive impact to the investigated performance indication. Cu-Ni electrode recorded 35% better in MRR than the Cu electrode, though with higher short-circuiting rate. Cu-Ni also provided the lowest Ra value with 10% better than the best Ra produced by Cu electrode. This phenomenon occurred as due to the high interaction between the catalyst materials of nickel and diamond which supported by the qualification data provided in this investigation
    corecore